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This paper studies the rate of convergence to equilibrium of Glauber dynamics 
(Gibbs Sampler) for a system of N Ising spins with random energy (at inverse 
temperature fl > 0). For each of the 2 N spin configurations the energy is drawn 
independently from the values 0 and - log  N with-probabilities 1 -  N-;', resp. 
N -~' (y>0), and is kept fixed during the evolution. The main result is an 
estimate of the coupling time of two Glauber dynamics starting from different 
configuratibns and coupled via the same updating noise. As N---, oo the system 
exhibits two dynamical phase transitions: (1)at ), = I the coupling time changes 
from polynomial (~,> 1) to stretched exponential (~,< 1) in N; (2)if'~,< I, then 
at fl = 1' the "almost coupling time" [i.e., the first time that the two dynamics are 
within distance o(N)] changes from polynomial (fl < ),) to stretched exponential 
(fl > y) in N. The techniques used to control the randomness in the coupling 
are static and dynamic large-deviation estimates and stochastic domination 
arguments. 

KEY WORDS: Gibbs Sampler; coupling; Glauber dynamics; random medium; 
large deviations. 

I N T R O D U C T I O N  

Glauber dynamics is an  i m p o r t a n t  tool  in the s imu la t i on  of  r a n d o m - e n e r g y  
spin systems,  e.g., spin glasses, (9"13) neura l  nets, c2~ and  Bayes ian  mode ls  in 

image  a n a l y s i s J ~ l  The  Gibbs Sampler  has been par t i cu la r ly  p o p u l a r  because  

of  its s imple  upda t i ng  rule: at each  step one  spin is d r a w n  r a n d o m l y  and is 

upda t ed  a c c o r d i n g  to the local  cond i t i ona l  G ibbs  measure .  The  dynamics  is 

revers ible  and  converges  to the G i b b s  measu re  assoc ia ted  with  the energy.  
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Knowledge of the rate of convergence is important in order to under- 
stand equilibrium and to devise stopping rules for the simulation. One way 
of probing this rate is to study the couplhTg thne of two Glauber dynamics 
starting from different configurations and coupled via the same updating 
noise. The coupling h~equalit), gives an upper bound on the rate of con- 
vergence to zero of the total variation between the two probability laws. 
The upper bound is in terms of the tail of the distribution of the coupling 
time. ~'s~ This approach is pursued by Derrida et aL (3'5'6) in a series of 
papers which present heuristic arguments and numerical simulations. 

Recently Cassandro et al. ~4~ made a rigorous analysis of the coupling 
time for a very simple random-energy model, where each configuration can 
take only two energy values 0 and - log N drawn independently with prob- 
ability 1 - N  -~', resp. N-; '  (),>0). N is the number of spins in the system. 
They consider two types of dynamics: (1)the uniform sampler; (2)the 
Gibbs Sampler (both at inverse temperature /3>0). A spin is updated 
according to the Boltzmann factor associated with: (1)the energy of the 
old configuration; (2)the energy difference between the old and the new 
configuration (i.e., at each step a random spin is updated according to the 
local conditional Gibbs measure). The two initial configurations are chosen 
with all spins up, resp. all spins down, i.e., at maximal distance N. The low- 
energy configurations are energy valleys that slow down the motion of the 
dynamics. Three different regimes are established as N--* ~ :  

I: ) ,> 1 (weak disorder). The energy is constant in large parts of 
the configuration space. The coupling time is N log N, as in the case of 
homogeneous energy. 

II: ), < 1, /3 <), (strong disorder, high temperature). The energy is 
sufficiently random to slow down the coupling. Still the system is fast in 
escaping the low-energy configurations. The two components get close 
together, within distance eN for any e > 0, in a time of order N. 

III: 7 < I, /3>'~, (strong disorder, low temperature). The system is 
slow in escaping the low-energy configurations. The distance between the 
two components stays large, above 6N for any 6 < 1/2, during a time at 
least N ~ +~ for some ~ = e(6) > O. 

Thus the coupling exhibits a dynamical phase transition at /3 = 1' provided 
~, < l, i.e., a crossover between regimes II and III. 

In the present paper we study the Gibbs Sampler version of the 
Cassandro et al. random-energy model. We extend their results by estab- 
lishing the following: 

A. There is a drastic change of time scale between regimes II and III. 
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Namely, we prove that in regime III the distance needs a time of order 
exp(KN~- 2.) to drop from �89 to bN for any 6 < 1/3 and some K = K(6)>  0. 
The drastic crossover between regimes II and III, from polynomial to 
stretched-exponential time scale, indicates extremely slow convergence to 
equilibrium at low temperature. 

B. In regime II the distance drops to N ~-~ ' -  ~1 in a time of order N 
and then is blocked for a long time. That is, there appears an intermediate 
distance scale at which the two components "almost meet" after a relatively 
short time, but then suddenly lose track of each other and need a very long 
time to finally hit each other. 

Section 1.5 gives heuristic explanation of A and B. 
Result A: In regime II the average sojourn time of a component in a 

low-energy point is much smaller then the average time it runs between 
low-energy points. Therefore most of the time the two components are 
moving. In regime III precisely the reverse is true. Therefore most of the 
time either both components are stuck or one of the components is stuck 
and the other is moving. In the latter case the two components easily lose 
track of each other because the dimension N of the space is very large. 

Result B: In regime II, when the distance between the two configura- 
tions is small the updating noise has only a small probability to pick a spin 
coordinate where the two configurations do not yet coincide, take away the 
separation between the spins, and thereby decrease the distance. On the 
other hand, it has a large probability to pick a spin coordinate where 
the two configurations do coincide. Since there is a positive probability 
(in the inhomogeneous medium) that this will lead to a separation of the 
spins, the distance may also increase. (The separation probability is zero in 
the homogeneous medium.) There is an intermediate distance scale where 
these two effects balance. 

Glauber dynamics other than the Gibbs Sampler are interesting as 
well. The analysis in this paper can also be carried out, for instance, 
for the Metropolis algorithm, I1-'~ leading essentially to the same results. 
Comparison of different dynamics is interesting because some dynamics are 
known to converge faster to equilibrium than others in the case of 
homogeneous energy/1o~ 

The layout of this paper is as follows. In Section 1 we define the 
model, state the theorems, and give a heuristic explanation. In Section 2 we 
set up the mathematical framework and introduce the mean-field version of 
the coupled system, where the dynamics evolve according to "effective 
medium" transitions. In Sections 3 and 4 we prove our estimates of the 
coupling time for the mean-field model. In Section 5 we show how these 
estimates carry over to the random-energy dynamics. 
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Coupling of random processes in random media is an area with very 
few rigorous results. The reader of ref. 4 and the present paper will 
appreciate the complexity of the problem, even for a toy model like the one 
under consideration. We hope that the mathematical ideas and techniques 
developed here will be useful in the study of other, more realistic situations. 
The fact that even this simple model exhibits two interesting dynamical 
phase transitions seems to indicate what type of behavior can be expected 
when running Giauber dynamics on real models. 

1. M O D E L  A N D  T H E O R E M S  

1.1. Random Energy 

Consider a system of N Ising spins and let X = { a = ( a l  ..... au)~ 
{ - ,  + }u} be the set of configurations. Assign to each a ~ Z independently 
a random energy H(tr), taking the values 0 and - l o g  N with probabilities 
1 - N  - r  and N -~', respectively, where ~, > 0  is a density parameter. The 
function H: Z ~ {0, - l o g  N} will be called the random medium. Its probability 
law, the corresponding product measure on X, is denoted by _P. Think of 
X as the N-dimensional 2-cube. Configurations a ~ X with H(a)= 0 will be 
called white sites ( 14"0, those with H(a) = - l o g  N black sites (B). 

1.2. Random Dynamics 

Given H, let (o(t)),~o be the discrete-time Markov chain on X 
evolving according to the following rule. At times t - -  1, 2 .... draw indepen- 
dently two random variables i(t) and u(t) uniformly from {1 ..... N}, resp. 
(0, 1]. Update a(t) to g ( t +  1) given by 

t r ( t+l)=a( t )  if u(t)>p(a(t),i(t)) 

= ail'~(t) if u(t)<<,p(a(t),i(t)) (1.1) 

where tr i is the spin configuration obtained from a by flipping spin i, and 

p(tr, i )= (1  + e  ~tHl~-H~13) 1 (1.2) 

with/~ > 0 the inverse temperature. Denote by p n  the measure of (o(t)),>~o 
on the trajectory space X ~ for the given H when a(0) is drawn from Z 
according to p. This process is the usual Glauber dynamics, sometimes 
called the Gibbs Sampler. It is ergodic and reversible with respect to the 
Gibbs measure 

nn(a) = Z[~' exp[ --/JH(o)-] (1.3) 
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where ZH is the normalizing constant. An equivalent way of doing the 
dynamics is to update 

a(t+l)=tra'l+(t) if u(t)>q(a(t),i(t)) 

=tz" ' l - ( t )  if u(t)<<.q(tz(t), i(t)) (1.4) 

where ag+ and ~ -  are the spin configurations obtained from a by putting 
cr~ = +, resp. cr~ = - ,  and 

q(a, i )=  (1 + e '~176 -~ (1.5) 

This formulation is more convenient for the coupling. 

1.3. Coupling 

Given H, let 

(x(t)),~o = (tr(t), r (1.6) 

be the discrete-time Markov chain on r 2  obtained by running two Glauber 
dynamics a(t) and r according to (1.4) and (1.5) with the same random 
variables i(t) and u(t). This will be called coupled Glauber dynamics. Denote 

~ H  by Pu• the measure of (x(t)),>.o on the trajectory space (Z'-) ~ for the 
given H when x(0) is drawn from 2 ̀2 according to/~ • v. 

Let 

z = inf{t ~> 0: a(t) = ~(t)} (1.7) 

be the first hitting time of the two components. The well-known coupling 
inequality bounds the total variation between p u and ~,~8~ 

1 - - H  ~ IP~(a(t)--q)-P~(~(t)=q)l<<.e~• (1.8) 

Thus, if v = zc H given by (1.3), then the tail of the distribution of r gives an 
upper bound on the rate of convergence of the Glauber dynamics to 
equilibrium starting from/~. 

Inequality (1.8) is valid for any coupling, but its strength depends on 
the specific type. There always exists an optimal coupling that achieves 
equality, but this coupling is generally non-Markovian and usually 
intractable. It is believed that most natural couplings roughly achieve 
equality/~'7's~ The above coupling, (1.4)-(1.6), should be no exception. In 
this paper we study the r.h.s, of (1.8) for # =  v =  n , .  The choice of starting 
both components in equilibrium is technically convenient but not essential. 
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Qualitatively our estimates should not depend on p and v as long as the 
two components start well apart. So, from now on we assume that, given 
H, ~(0) and 4(0) are drawn independently according to ~n. We suppress 
H and the starting measure from the notation. Throughout the paper we 
use the symbol P to denote the joint probability measure for the random 
medium and the coupled Glauber dynamics. 

1.4.  T h e o r e m s  

Define the Hamming distance 

N 

d(a, 4 )=  ~ l{tr,:#~i} (1.9) 
i = l  

Define the distance process 

(d(t)),~>o = (d(x(t))),>~o (1.10) 

on the state space D = {0, 1 ..... N}. Clearly 

P(z > t) = P(d(t) :# 0) (1.11 ) 

because once the two components meet the coupling keeps them together 
afterward. The trouble with the distance process is that it is non- 
Markovian because the random medium H is not constant. 

Theorems 1, 4, and 5 below give estimates of r in the limit as N ~ oo. 
Different behavior is found in the following three regimes: 

I: ~,>1. 

II: 7<1 ,  fl<),. 

III: ) , < l ,  f l>7.  

The following theorem is proved in ref. 4. 

T h e o r e m  1. In regime I, for any e > 0  

( z 1 < e ) = l  (1.12) lim P N log N 
N ~ z r .  

Consider also the first time when d(t) drops down to level M > 0 ,  i.e., 

z(M) = inf{t/> 0: d(t) = M} (1.13) 

[Note that our choice of starting point (a(0), 4(0)) has the property that 
d(O)/N---, 1/2 with P-probability 1 as N---, oo]. The following four theorems 
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are our main results. Theorems 2 and 3 apply to the mean- f ie ld  version of our 
model (defined in Section 2.2), where the coupled dynamics evolve according 
to "effective medium" transitions, i.e., with a 1-step transition kernel that is 
the average over H of the 1-step transition kernel controlling the coupled 
dynamics defined in (1.6). We denote by p , , I  the corresponding probability 
measure on the trajectory space (Z2) ~. Theorems 4 and 5, on the other 
hand, apply to the random medium dynamics  corresponding to P. 

Theorem 2. In regime II: 

(i) For any 6 >  1 there exist 0 < K I  < K 2 <  ~ such that 

lim pmr(K~ N <  r ( 6 N  ~ - I;.-a~) < K 2 N )  = 1 (1.14) 
N ~  or 

(ii) For any 6 <  I there exist 0 <  Kt < K 2 <  ~ such that 

lim P"'S(eK' u ' - ~ <  r ( 6 N  1 - I ; , -  p~) < etqN ' -~') = 1 
N ~  o~ 

(1.15) 

T h e o r e m  3. In regime III, for any ~ <  I/3 there exist 0 < K I <  
K 2< ~ such that 

lim P"'f(eK~U'-; '< r(6N) < e K'-N'-~') = 1 (1.16) 
N ~  

T h e o r e m  4. In regime II: 

(i) (a) I f 2 y - f l <  1, then the same result as in Theorem 2(i) holds 
under P. 

(b) If 2y - fl ~< 1, then for any e > 0 there exists 0 < K2 < 0o such 
that l imu_ ~. P ( r (N  ~'+~) < K2N)) = 1. 

(ii) If 2 y - f l  < 1, then for any c~ < 1 there exists 0 < K1 < 0o such that 
limN_ ~ p(eXl  u,-~,,.-B~ < r ( f N  l _ i~.-fl~)) = 1 

Theorem 5. In regime III, the same result as in Theorem 3 holds 
under P. 

In regime III, Theorem 5 provides us with a complete extension of 
Theorem 3 showing that the coupling time is stretched exponential. In 
regime II, however, Theorem 4 is weaker than Theorem 2. Namely, when 
21 ' - f l  <1  we again find a sudden slowdown at an intermediate distance 
scale, but when 2 ~ -  fl >/1 we lose most of the information. The reason for 
this is a breakdown of certain large-deviation estimates in Section 5. 
We have no doubt that the restrictions are artificial, but the technical 
complications needed to remove them are substantial. 

822/75/3-4-16 
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1 .5 .  D i s c u s s i o n  

In order to heuristically explain our results, consider first the homo- 
geneous medium where H ( o ) = 0  for all a e Z" (which corresponds to 

= ~) .  In this case d(t) is Markov with transition probabilities 

d 
e(d(t + 1 )=dld ( t )=d)= 1 - - -  

N 

d 
P(d(t+ 1 ) = d -  l l d ( t )=d)=- -  

N 

(1.17) 

Indeed, q(a, i )=  1/2 for all o and i [recall (1.5)], and so at time t the 
coupling forces the spins with index i(t) in the configurations a(t) and ~(t) 
to become identical [recall (1.4)]. Spins already identical stay identical: 
d(t)/N is the probability that i(t) picks spins that are not yet identical. 
Equation (1.17) says that d(t) is a death chain. Standard estimates yield 
T/N log N---, 1 with P-probability 1 as N--* oo. The N log N scale comes 
from 

[ d(O) d )  E(r) = E (,a~__, "~UE(l~176 (1.18) 

In order to understand the dynamics in the random medium it will be 
helpful to draw coupling diagrams as shown in Fig. 1. The first line is for 
the a-component and lists the spin value a,,~(t) and the colors H(a(t)) 
and H(a"'~(t)). The interval (0, 1] is split into two parts, separated at 
q(a(t), i(t)) which is computable from (1.5). According to (1.4), if u(t) falls 
to the left of q(a(t), i(t)), then the spin i(t) is set to - ,  otherwise to +.  
This allows us to read off the transition probabilities for the spin i(t). The 
second line is for the i-component. By reading the two lines together we 
can read off the transition probabilities for the distance d(t). 

For instance, if H ( a ) = 0  for all a e X ,  then the diagram is as shown in 
Fig. 2, from which (1.17) easily follows by considering the four possible 
values for (ai(,)(t), ~i(,l(1)). 

q(a(t),i(t)) 
0 

ai(t)(t ) H(a(t)) n(ai(t)(t)) I - 1 + 11 

~,r xcC~Ct)) nC$r I I 
Oq(~(t),i(t)) 

Fig. I 
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o~(t) (t) W W t 

r w w ,  

- a /2  + 
I I 

- . 4 -  
I I 

1/2 
Fig .  2 

R e g i m e  I (? > 1 ). Theorem 1 states that when y > 1 the same quali- 
tative behavior is found in the random medium as in the homogeneous 
medium. This can be explained as follows. In addition to the distance 
process (1.10), define the color pair process 

(c(t)),>~o = (H(a(t)), H(~(t))),~>o (1.19) 

on the state space C 2 = { W, B} 2. (Recall from Section 1.1 that the energy 
levels 0 and - l o g  N are called white and black.) Each site a e Z  has N 
neighbors and each neighbor has probability N ->' to be black. Therefore, 
when 1' >1 a typical site has only white neighbors and the average time 
needed for either of the components to hit a black site for the first time is 
of the order N~'>> N log N. This implies that typically c(t)= W W  up to a 
time large enough for the components to meet, as if H were constant and 
d(t) were decreasing according to (1.17). 

R e g i m e s  II a n d  III (r < 1). The situation is drastically different 
when ~, < 1. In this case typically one of the components hits a black site 
after time ~ ' , ~  Nlog  N and gets stuck. If the other component is still 
white, then the corresponding diagram at this stage is as shown in Fig. 3 
(most neighbors are white), with 

q(a(t), i(t))=NP/(NP+ 1) if a;(,)(t)= - 

= 1/(Nt~+ I) if ai(,)(t)= + (1.20) 

or the same diagram with a and ~ reversed. Hence c(t) �9  {BW, WB} for a 
time of order N a. Consequently, one component being stuck and the other 
being mobile, the two components tend to drift apart because S is very high 
dimensional. From Fig. 3 we compute that for large N the transition 
probabilities for d(t) are roughly given by 

l d  
P(d(t + 1 ) = d -  l l d ( t ) = d ) ~ . - - -  

2 N  

1 
P(d(t + 1 ) = d)d(t) = d) ~ ~ (1.21) 

l ( 1 -  P(d(t+ l ) = d +  l l d ( t ) = d ) , - ~  d )  
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q(a(t),i(t)) 
a Ct)(t ) B W  , J 

+ 

-4- ~ ( o ( t )  W W I - , 
1/2 

Fig. 3 

so d(t) indeed tends to drift in the direction of N/2. Thus we see that the 
presence of the black sites is felt in that it tends to increase the distance (as 
opposed to decrease when the components are both on white sites). Of 
course, it is also possible that both components get stuck simultaneously in 
a black site for a time of order N a. In that case c(t) = BB, but d(t) does not 
change. 

Hence we conclude that when 7 < 1 there is a competition between 
c(t) = W W  and c(t)E { BW, WB, BB}, which corresponds to d(t) competing 
between (1.17) driving it down and (1.21) driving it up. This explains why 
in regimes II and III  the coupling is slower than in regime I. To explain 
where the difference between Theorems 2 and 3 (resp. Theorems 4 and 5) 
comes from, we argue as follows. 

R e g i m e  II (7<1 ,  f l<7) .  I f f l < 7 ,  then N ~,~N r a n d  so much more 
time is spent on white sites than on black sites. Hence, c(t)= W W  occurs 
more often than c(t)e {BW, WB, BB}, so that d(t) mostly follows (1.17). 
As a result, d(t) drops below eN for any e > 0 in a time of order N, just as 
in the homogeneous medium where 

/ d(Ol d ( 0 )  1 
E(T(eN)) = E ~ (1.22) 

Theorem 2 says that d(t) in fact drops down to level N '-(~'-p) in a 
time of order N and then gets blocked. To explain why, we observe that 
some sort of balance is struck at this level, namely: (1)the average decrease 
of d(t) is N-(;'-P)N~'=N ~ over the time intervals of length N v where 
c ( t )=  WW [as in (1.17)]; (2)the average increase is N a over the time 
intervals of length N ~ where c(t)e {BW, WB, BB} [as in (1.21)]. 

It is only after d(t) drops below level N ' -(~'-P) that the coupling slows 
down considerably and that a very long time is needed for d(t) to move 
down further. Indeed, starting from fiN ~-t~'-p), d(t) decreases on the 
average by 5N-(~'-PW~'= 6N p when following (1.17) over an average time 
N ~'. On the other hand, d(t) increases on the average by N ~ when following 
(1.21) over an average time N p. Hence there is a drift upward when 6 < 1. 
In order for d(t) to drop a total of eN ~-t~'-p) the system has to essentially 
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wait until it happens to spend a time eN ~ - ~' - aI /N-  ~'- ~ = eN doing (1.17). 
This event occurs after a time of order ( 1 - N - O ' N . ~ e x p ( e N ~ - ~ ' ) ,  on a 
rough scale. 

Regime  III ( y < l ,  f l>y ) .  I f f l > y ,  then N p~>N ~'and so now much 
more  time is spent on black sites than on white sites. Hence, c ( t ) e  
{BW,  WB, BB}  occurs more  often than c ( t ) =  W W ,  so that  d(t) mostly 
follows (1.21). The coupling is extremely slow and Theorem 3 shows that 
a stretched-exponential  length of time is needed for d(t) to even drop below 
6N for any 6 < 1/3. 

To  understand the estimate in Theorem 3, observe that if fl > 7, then 
in order for d(t) to drop  a total of eN the system has to essentially wait 
until it happens to do a white run with c ( t ) =  W W  [as  in (1.17)] over a 
t ime interval of length eN. Since 1 - N -~ typically is the probabil i ty that  a 
white site is hit when a componen t  moves, it takes a time of order 
(1 - N - ~ ' ) ~ U . ~ e x p ( e N  1-~') for this run to occur, on a rough scale. 

2. M A R K O V  S T R U C T U R E  A N D  MEAN-F IELD M O D E L  

In this section we set up the probabilistic f ramework and introduce the 
mean-field version of the coupled dynamics. 

2.1. Markov Structure  

Suppose H is fixed. Define the noncoincidence set of a, ~ e X by 

I(a, 4 ) =  {i6 {1 ..... N}: a i #  ~,} (2.1) 

For  a, r e Z and a, b ~ C define 

V,((a, ~), (a, b))= # {i~I(a, ~): H(ai)=a, H(~i)=b} 

V2((a, r (a, b ) ) =  # { i r  ~): H ( a ' )  = a, H ( r  
(2.2) 

i.e., the numbers  of indices i inside, resp. outside, the noncoincidence set of 
cr and ~ with the proper ty  that  the colors a and b are seen when the spins 
indexed i are flipped. These numbers  control  the dynamics as follows. 

We shall be moni tor ing the process o f  color pair and distance on the 
state space C 2 x D [recall (1 .10)and  (1.19)] 

(r(t)),>~o = (c(t), d(t)) ,~o (2.3) 

The problem is that  this process is non-Markov ian  because H is not 



596 Frigessi and den Hol lander  

_ qe + 
+ a ~  ~ z I 

- b b  ~ - J + i 
qb 

Fig. 4 

constant. In order to describe its behavior, we consider the conditional 
transition probability [recall (1.6)] 

P(r(t  + 1) = r ' l r ( t )=r ,  x ( t ) =  x )  (2.4) 

The first question we ask is what information contained in x ( t ) =  
x e S  2 is needed to compute  (2.4). In other words, what additional infor- 
mation besides r ( t ) = r  determines the transition to r ( t + l ) = r ' ?  The 
answer comes in two lemmas. Define 

and 

I(t) = I(cr(t), ~(t)) (2.5) 

L a m i n a  1 .  

?(t) and on whether i ( t )~I ( t )  or i( t)CI(t) .  

Proof. If i ( t )e I ( t ) ,  then 
Suppose ( + ,  - ). Write 

?(t) = (H(ail"(t)), H(~i(t)(t))) (2.6) 

Given r(t), the transition r ( t ) ~  r(t + 1) only depends on 

(a,,~(t), ~,,l(t)) = ( + ,  - ) or ( - ,  + ). 

c(t) = (a, b) 

?(t) = (~,/~) 

i ( t ) ) = %  

i(t)) = qb 

in Fig. 4 (we pick the case q,  > qh as an 

Suppose ( - ,  + ). Then we have the diagram shown in Fig. 5. Inspection 
shows that we obtain the same scheme as (2.8). We thus see that the 
coupling is symetric for ( + ,  - )  and ( - ,  + ). 

q(a(t), 

q(~(t), 

Then we have the diagram shown 
example). If r =  ((a, b), d), then we 

r ' =  ((& b), d -  l) 

= ((~,/~), d) 

= ((a,/~), d -  1) (2.8) 

(2.7) 

can read off 

w.p. qb 

w.p. q, - %  

w.p. 1 - q a  
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1-q~ 
- + 

- a a  J I I 

+ bb i - ,i + 
1 - qb 

Fig. 5 

A similar argument holds if i(t)q~I(t). The coupling is symmetric for 
( + ,  + )  and ( - ,  - ) .  I 

Next we define the following family of transition kernels on C2x  D, 
indexed by k =  1, 2 and ?eC2 :  

P((r, r') = P(r(t  + 1 ) = r'[r(t) = r, i(t) ~ lit),  ?(t) = ?) 
(2.9) 

P~(r, r') = P(r(t  + 1) = r ' lr(t)  = r, i(t) q~ I(t), ?(t) = ?) 

According to Lemma 1, these kernels control the transition r(t)-~ r(t + 1). 

L e m m a  2. For all x, r, and r' 

1 
= ~ Pk(r, r') (2.10) P ( r ( t + l ) = r ' l r ( t ) = r , x ( t ) = x )  ~ ~ V,(x, ?) ~ 

k = l , 2  ? e c -  

ProoL Condition on i ( t ) e l ( t ) ,  ? ( t )= ? ,  resp. on i ( t ) r  ? i t )=? .  
Apply Lemma 1 and note that by (2.2) 

1 
P( i ( t ) e  I(t), ?( t )= ? I x ( t ) =  x ) = ~  V,(x, ?) 

(2.11) 
1 

P(i(t)C~I(t), ? ( t ) = ? l x ( t ) - - x ) = - ~  Vz(x, ?) I 

The difference between k =  1 and k = 2  is that d(t) cannot increase 
when iit) is inside the noncoincidence set and cannot decrease when iit) is 
outside. The transition kernels Pe,(r, r') are tabulated in Table I. There are 
eight kernels indexed by k =  1, 2 and ? e C  2= { WW, BW, WB, BB}, and 
each kernel corresponds to four rows of the table. Each row can be com- 
puted from a coupling diagram. Take, for example, the row corresponding 
to k =  1, ? =  B W, and r =  WWd. Draw the diagram shown in Fig. 6. As 

1 - v  
- + 

+ W  B I  I I 

- + 

- W W I  t i 
1/2 

Fig. 6 
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Table IA. The Transition Kernel P~(r, r') 

? rN N W W d  W W d -  I B W d  B W d -  1 W B d  W B d -  I BBd B B d -  1 

W W  W W d  1 

S w d  v + - o  �89 

w s d  v ~ - ,, �89 

BBd t, v 1 - 2v 
I I B W  W W d  v ~ - t ,  ~ 

B W d  1 

W B d  v I - v 
I I BBd v ~ - v 

WB W W d  v �89 - v �89 
B W d  v 1 --t' 

W B d  1 

B~d  v " -  t, + 

BB W W d  v v 1 - 2v 
8 w d  v � 8 9  v + 

I I) I W B d  v ~ - 

BBd 1 

explained in Section 1.5, the first line displays the spin value a~l,)(t), the 
colors H ( a ( t ) )  and H ( a ~ m ( t ) ) ,  and a graph for the value of q ( a ( t ) ,  i ( t ) ) ,  

with the abbreviation v = ( 1 + N p) - t. The second line does the same for the 
i -component .  The coupling uses a common  value of u ( t )  in the two graphs. 
The diagram allows us to read off the corresponding entries in Table I: 

(a) w.p. 1/2 only a(t) flips, yielding: 
( - , - ) ,  c ( t +  l ) = B W ,  d ( t +  l ) = d ( t ) - l .  

(b) w.p. 1 / 2 - v  both a(t) and ~(t) flip, yielding: 
( - ,  + ) ,  c ( t +  1 )=  BW, d ( t +  1 )=  d(t). 

(c) w.p. v only ~(t) flips, yielding: 
( + ,  + ) ,  c ( t +  1 ) =  W W ,  d ( t +  1 )=  d ( t ) -  1. 

We remark that the symmetry in the coupling produces the same entries 
when + and - change places. Fig. 7 shows one more diagram, corre- 

_ v + 

+ B  W t  t t 

+ W B ~  - I + I 
1 - v  

Fig. 7 
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N /  
? r N  N W W d  W W d -  1 B W d  B W d -  1 W B d  W B d -  1 B B d  B B d -  I 

W W  W W d  1 

BWd ~, �89 �89 
W B d  t, �89 � 8 9  V 

B B d  v 1 - -  v 

sw  WWd v �89 �89 
B W d  1 

W B d  t, v 1 - 2v  

B B d  v �89 ~ - v 

W B  W W d  v �89 �89 - v 

B W d  v v 1 - -  2v  

W B d  I 

B B d  v ~ �89 - v 

B B  W W d  v 1 - v 

B W d  v �89 ~ - t '  

W B d  v ! i 2 ~ - -  P 
B B d  1 

sponding to k = 2, ? = WB, and r = BWd. The reader is asked to check the 
resulting entries in Table I. 

To summarize this section, Lemma 2 and Table I describe how the 
process (r(t)),~> o defined in (2.3) evolves. The dependence on the under- 
lying position (x(t)),>~o, defined in (1.6), is through the x-dependence 
of the numbers Vk(x, ?) defined in (2.2), which depend on the random 
medium H. 

2.2. Mean-Fie ld  Model  

The mean-field approximation consists of replacing Vk(x, ?) in (2.10) 
by its average value EVk(x, ?) over the random medium. For every a, ~ e Z" 
and a, b e  C such that d(a, ~) 50,  N we have 

EVl((cr, ~), (a, b))= d(a, ~) p(a) p(b) 

EVz( (a, ~), (a, b) )= ( N - d ( a ,  r p(a) p(b ) 
(2.12) 

with the abbreviation p ( W ) =  l - N - ; '  and p ( B ) = N - L  This follows by 
noting that the coloring is i.i.d, and that # I ( a ,  ~ )=d (a ,  r Thus, in the 
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mean-field model the process (r(t)),>.o defined in (2.3) is Markov with state 
space CZx D and with transition kernel 

Q(r,r')= ~ c , p ( ? ) { d p ~ ( r , r ' ) + ( l - d ) p ~ ( r , r ' ) }  (2.13) 

between the states r = (c, d) and r' = (c', d'), where we use the abbreviation 
? =  (~, b) and p ( ? ) =  p(h)p('b). Of the original dependence on x(t) in (2.10) 
only the dependence on the distance d(t)= d(x(t)) is left over in (2.13). 

Table lI gives the entries Q(r, r') computed from Table I via (2.13). 
We use the abbreviations 

d 
A = ~ ,  v = ( l + N t ~ ) .  -~, w = N  -~' (2.14) 

The last column in Table II lists Q(r, r') to leading order in v and w (as 
N ~  ~ ) ,  which means all terms up to and including order N -a  and N -~'. 
Note that some zeros in the last column correspond to transitions with 
probability o(N -n ^ N-~'). 

In the analysis in Sections 3 and 4 we shall at first ignore all trans- 
itions that do not appear in the leading-order column of Table II. At the 
end of Sections 3.1 and 4.1 we shall see that these transitions can be easily 
taken care of as small perturbations of the leading-order transitions. 

2.3.  S t o c h a s t i c  D o m i n a t i o n  f o r  M e a n - F i e l d  M o d e l  

Table II has too many entries to see clearly what is going on. The 
main idea in our approach to estimate coupling times is to sandwich the 
distance process (d(t)),~o between two processes (d,(t)),>,o and (d*(t)),_>o 
on the same state space D but with a more accessible evolution. The 
construction will be done in such a way that if we define, as in (1.13), 

r , ( M )  = inf{t >/0: d,(t) = M} 

T*(M) = inf{t >/0: d*(t) = M} (O<~M<.N) 
(2.15) 

then for N sufficiently large and for appropriate choice of M 

r , ( M )  ~(r (M) < "c* (M) (2.16) 

[The symbol ~( means stochastically smaller, i.e., X <  Y when P(X> k)<~ 
P( Y> k) for all k. This notion is equivalent to the existence of an ordered 
coupling, i.e., X~( Y iff there exists a coupling such that P(X<~ Y) = 1.] By 
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c c' d ' -  d Q(r, r') Leading order 

W W  W W  + 1 0 0 

0 (1 - A ) [ v w ( 2 - w ) + ( l  - -w) ' ]  (1 - .4)(1 - 2 w )  

--I  AE2wv(I - w ) + ( l  - w )  2] A(I --2w) 

B W / W B  + 1  (1 - - d ) ( � 8 9  w(l w) - �89 - a ) w  
0 �89 1 -- W) -- Aow( 1 -- It') �89 

-1  .J[vw-'+�89 �89 
BB + I 0 0 

O (1 - v )  w2--Avw z 0 

- I  0 0 

BB W W  + 1 0 0 

0 (1 - A ) v ( 1 - - w )  2 ( 1 - A ) v  

- 1  0 0 

B W / W B  + 1 0 0 

0 (1 --A) vw(l - -w)  0 

--1 do(1 --w) Av 

BB +1 (1 -- A)(�89 v) 2w(1 - w )  (1 - -A)w 

0 I- -V(I--w)2--w(I--w)--A[v(I- -w2)+w 2] I - - ( I + A ) v - - w  

-- 1 Aw zJw 

B W  W W  + 1  0 0 

0 ( I - ~ ) v I I - w )  2 (1-~)v  
-.1 Av(1 - w )  tv  

B W  +1 ( 1 -  A)(�89 v)(l - w )  2 (I - d ) ( � 8 9  v -  w) 

o vw+�89 �89 
- I  ~[v..2+}(I-.,-')] �89 

WB + 1 0 0 

0 ( l - a ) v w ( l - w )  0 
--I  0 0 

BB +1 ( 1 - A ) [ ( � 8 9  (1--A)w 
0 �89 2-Llvw 2 0 

--1 d[-(l -- v) w(1 -- w) + �89 Aw 

WB By symmetry  

subsequently estimating r , ( M )  and T*(M) we shall be able to prove lower 
and upper bounds for z(M). 

In Sections 3 and 4 we give the proofs of Theorems 2 and 3 for the 
mean-field coupling defined by (2.13). The proofs are based on a sequence of 
technical lemmas involving coupling arguments (Sections 3.1 and 4.1) and 
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large-deviation estimates (Sections 3.2 and 4.2). Much of the work lies here. 
The mean-field coupling has all the essential ingredients and is complex enough 
to warrant a separate treatment. In Section 5 we shall see how to handle the 
random medium described by (2.10) and how to prove Theorems 4 and 5. 
This will involve some additional large-deviation estimates, but most of the 
work in Sections 3 and 4 will carry over. 

3. PROOF OF LOWER B O U N D S  FOR M E A N - F I E L D  M O D E L  

3.1. Lower  Stochast ic  Domina t ion  

Referring to the kernel Q in Table II, we first note that by symmetry 
all paths through B W  have the same probability when rerouted through 
WB. Hence we may identify B W  and WB into a single state BW/WB and 
define a new kernel Ql on { WW, BB, BW/WB}  x D by 

Q ' ( r , ( B W / W B , . ) ) = 2 Q ( r , ( B W , . ) )  if r = ( W W , . } , ( B B , . )  

Q ' ( ( B W / W B , . ) , r ' ) = 2 Q ( ( B W , . ) , r ' )  if r ' = ( W W , . ) , ( B B , . )  

QI ( ( BW/WB, .), ( BW/WB, . ) ) = Q( ( BW, .), ( BW, .)) (3.1) 

+Q((BW,  . ) , (WB, .)) 

Ql(r, r ')= Q(r, r') otherwise. 

We next proceed with the first lower stochastic domination. Namely, 
we skip all the time spent by the process without changing. For this we 
define a new kernel Q2 on { w w ,  BB, BW/WB}  x D by 

Q2(r, r') 
Qt(r,r') 

if r ' # r  
1 - Q ' ( r , r )  

= 0  if r '=r  (3.2) 

Obviously 

r(M) = r l (M) ~> ~2(M) (3.3) 

In Table III we display the transition probabilities Q2(r, r') up to leading 
order as N ~ oo. 

In Sections 3.1.1 and 3.1.2 we treat regimes III  and II, respectively. We 
introduce a new Markov process r3(t)=(c3(t),d3(t)) which has the 
property that d3(t) decreases faster than d2(t) in a certain interval. The 
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c c' d ' - d  QZ(r, r') 

J(1 -2w) 
WW WW - 1 

,d + 2w(l--J)  

(1 - d ) w  
BW/WB + 1 J + 2w( 1 - d i =: p~ 

W 
0 :P2 d + 2w(l --d) 

d W 
--I =:P= LI + 2w(1 --d) 

(1 - d ) v  
B B  W W  0 : p . )  

(1 + J ) v + w  

2 At, 
B W / W B  - 1 =: P9 

(1 + d ) v + w  

(1 --d)w 
B B  + l 

(1 + d ) v + w  

ZJW 
--1 :Pll (1 + d ) v + w  

BW/WB WW 0 (1 - d ) v  
~+zl(v+w) 

dv 
-1  �89 w) :P8 

(1 - ,a)( �89 v -  w) 
BW +1 �89 =:P5 

- -  I �89 : P4 �89 + J(v + w) 

(1 - J ) w  
B B  + I � 8 9  + w)  = :  p~ 

,d w 
- 1 � 8 9  d ( v +  w)  = :  P6 

c o m p a r i s o n  be tween d2(t) an d  d3(t)  is ob t a ined  via a series o f  coupling 
diagrams. In  Sect ion 3.2 we shall use d3(t)  to prove  lower b o u n d s  for 
r2(M).  Toge the r  With (3.3) this will give the lower b o u n d s  in Theorems  2 
and  3. 

While  read ing  Sect ion 3.1 the reader  should  keep in mind  the heuris t ic  
picture descr ibed in Sect ion 1.5. 
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3.1.1. Regimell l (y<l,  fl>y). PickO<(i<l/2, e>O, andletr3(t) 
be the Markov process on {1, 2} x 7/ with the following kernel: 

2w 
03((1, d), (1, d -  1))= 1 ---~- 

2w 
ql :=Q3((l,d), (2, d - 1 ) ) = - ~  - 

Q3((2, d), (1, d -  1))=2(1 +e)w if 2y>f l  

v 
= -  if 2y~<fl 

w 

qz:=Q3((2, d),(2, d - 1 ) ) = [ l - 2 ( l  +e)w](i if 2y>f l  

if 2y~<fl 

if 2y>f l  

if 27~<fl 

= 1 -  (i 

q3 := Q3(( 2, d), (2, d +  1))= [1 -2 (1  + e)w](1 - 6 )  

= 1 -  (1 - ( i )  

Q3 zero otherwise 

(3.4) 

Figure 8 gives the graph of the above transitions. The + and - attached 
to the arrows denote the change of distance in each transition. The starting 
point of the process is chosen 

r3(0) = (1, (iN) if 2y>f l  

= ( 1 , ( i N )  if 2y~<fl, 

= (2, (iN) if 2y < fl, 

c2(0) = WW, BW/WB 

c2(0) = BB (3.5) 

The distinction between the two cases 2y >/3 and 2y ~< fl is a technical 
necessity for the proof. The parameters 6, e are built in to accommodate 
small perturbations later on (recall the remark made at the end of 
Section 2.2). 

ql 

- J ( Z . - . ~  % 
t - + + - , ~  

Fig. 8 
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Lemma 3. For N sufficiently large, as long as 

d2(t) 
- - ~ [ 6 1 , 6 2 ]  with 0 < 6 1 < & 2 < &  (3.6) 

N 

there exists a coupling of r2(t) and r~(t) such that 

d2(t+ l)~d2(t)>~d3(t+ l ) - d 3 ( t )  a.s. (3.7) 

Proof of temma 3 for 27>fl.  We construct a coupling such that 
(c 2, c 3) can only appear in the combinations 

(c2, c3)~{(WW, 1),(BW/WB, I),(BB, 1),(BW/WB, 2)} (3.8) 

The transition probabilities of the coupled process ( r  2, r 3) are given by four 
diagrams showing the transitions from each of the four pairs (c 2, c 3) in 
(3.8). The first diagram is shown in Fig. 9, with 

Pl + P2 -b P3 >/q, (3.9) 

The first line is for the r2-component and shows the transitions from WW 
to either BW/WB or WW, where - ,  0, + indicates the variation in the dis- 
tance d. The probabilities p~, P2, P3 are taken from Table III. The second 
line is for the r3-component and shows the transitions from 1 to either 1 
or 2, where - indicates that the distance d 3 drops. The probability q~ 
comes from (3.4). The coupling is achieved by using the same random 
variable, drawn uniformly from (0, 1], for both lines. 

P l  P2 P3 
W W  I B W l W B -  I I ra '~wee I BWlWB+ I w w -  I 

ql 
1 l i i 

2 -  1 - 

Fig. 9 

P4 P5 
BW/WB z ~ / . , B -  i r , , / w s §  

ql  
1 l l 

P s  P7 P8 
l l l BB-  BB+  y ~ -  

2 - 1 - 

Fig. 10 
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P9 Plo P i t  
B B  I 8.,/.,B- t ~ I Bs- I Ba+ I 

q l  
1 1 2 _ ,  1 -  I 

Fig. 11 

/94 P5 P6 P7 P8 
B W / W B I  B.,iwe- I eWlWm- I ee- I nn+ I .,w- I ~ t 

2 I 2 -  i 1 -  ..bl i 

Fig. 12 

P6 P7 P4 P5  2':)8 
B W / W B t  ee- I ae+ I ~ , :vB_ I ~v/we+ l *w -  I re, v, I 

q l  
1 i i i 

Fig. 13 

P5 P7 P6 P4 Ps  
B W / W B I  ~,/ws+ I as+ I sn- I nw,,wB- I .,w- I wv,,, I 

qa q2 2 I i t I 
2 +  2 -  1 -  

Fig. 14 

Pzz P9 Plo 
B B  i , . .  i .8 -  i ~,,/ . ,e- I w ~  i 

q 3  q2  
2 i i i i 

2 +  2 -  1 -  

Fig. 15 
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The other three diagrams are given in Figs. 10-12, with 

P4 + P5 >~ ql (3.10) 

p9>~qj (3.11) 

P4 ~< q2 
(3.12) 

P4 q- P5 1> q2 + q3 

The conditions (3.9)-(3.12) guarantee that (c 2, c 3) stays on the four com- 
binations given in (3.8), and that the variation in (d 2, d 3) satisfies (3.7). It 
remains to check that (3.6) implies (3.9)-(3.12) for N sufficiently large. This 
is easily verified from (3.4) and Table III by using that 2y > fl > ), > 0 is the 
same as wZ ,~ v ~. w ,~ l. | 

Proof of Lerama 3 for 2~ <~ 8. This time the four allowed combina- 
tions of (c 2, c 3) are 

(c~,c3)~{(WW, 1) , (BW/WB,  1) , (BW/WB,  2),(BB, 2)} (3.13) 

The first diagram is the same as Fig. 9 and again requires (3.9). The other 
three diagrams are given in Figs. 13-15, with 

P6 q- P7 <~ql (3.14) 

P4 -{- P5 + P6 q- P7 ~>ql 

Ps + P7/> q3 (3.15) 

P~ + P6 -I- p~ ~< q2 + q3 

P4 "4- P5 + P6 + P7 >t q2 + q3 

pto <~ I - q 2 - - q 3  (3.16) 

pg+plo>~ 1--q2--q3 

Pg + Plo + Ptl <~ l - -q3  

Again, (3.9) and (3.14)--(3.16) guarantee that (c 2, c 3) stays on the four 
combinations given in (3.13), and that the variation in (d 2, d 3) satisfies 
(3.7). One easily verifies that (3.6) implies (3.9) and (3.14)-(3.16) for N 
sufficiently large using that fl > ~, > 0 is the same as v ,~ w ,~ I. 

The condition 2y ~< fl is not needed at this point, but will be in 
Section 3.2. | 

822/75/3-4-17 
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3.1.2. Regime II (y < 1, fl <),). Pick 0 < 6 < 1/2, e > 0 and let ra(t) 
be given by the following kernel: 

21) 
Q3((1, d), (1, d -  1))= 1 - - -  

6 

2v 
q, := Q3((1, d), (2, d -  1)) = ~ -  

Q3((2, d), (1, d -  1))= 2(1 + e)v 

6w 
q2 := Q3(( 2, d), (2, d -  1))= [1 - 2 ( l + e ) v ] - -  

13 

q3 :=Q3((2, d), (2, d+ l ))= [ l - 2 (  l + e)v].(l -~--~) 

Q3 zero otherwise 

if y<2/3 

if ~<2fl  

if •<2fl 

(3.17) 

The starting point is 

r3(0) = (1, - ~ )  if y<2f l  (3.18) 

L e m m a  4. For N sufficiently large, as long as 

dZ(t) w 
- - E [ 6 1 , 6 2 ] -  with 0 <6 ,< 62< 6  (3.19) 

N v 

there exists a coupling of rZ(t) and r3(/) such that 

dZ(t + 1 ) - d2(t) >/d3(t + 1 ) - d3(t) a.s. (3.20) 

ProoL The coupling is the same as in Figs. 9-12, and again one 
checks that (3.9)-(3.12) are satisfied under (3.19) using that 0 </3 < ~ < 2/3 
is the same as v: ,~w,~v,~ 1. II 

Remark. The case ),/> 2fl presents a small complication. Namely, the 
transition probability P~o from BB to WW (see Table III) exceeds all other 
transition probabilities and therefore we cannot find a coupling with a pro- 
cess of the type in Fig. 8. The difficulty sits in Fig. l l :  P~o is so big that the 
combination (c 2, c 3) = ( WW, 2) cannot be avoided, making (3.20) false. It 
is possible to get around this complication by the following modification of 
Fig. 8: When the process goes from 2 to 1 the distance decreases not by 1 
but by a random variable Z* which takes into account the total drop in 
distance while the process resides in BB. All that will be needed later on in 
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Section 3.2 is that Z* has an exponential tail with a mean that is bounded 
as N---, oo. With this modification it is possible to construct a coupling 
satisfying d3(t)<<,d2(t) a.s. as long as (3.19) holds. The coupling diagrams 
are somewhat messy and we refrain from spelling out the details. 

To close this section we recall that we have so far ignored all trans- 
itions in Table II with probability o(v ^ w). However, these can now be 
easily incorporated because the coupling diagrams in Figs. 9-15 are flexible. 
Indeed, such perturbations correspond to including some extra intervals in 
the diagrams, all of which are of smaller order than the smallest interval 
drawn so far. The parameters 6, e in (3.4) and (3.17) were built in to show 
that these intervals cannot affect Lemmas 3 and 4. Thus, Lemma 3 and 4 
are valid with the perturbations included, i.e., for the fourth column of 
Table II. The skeptical reader is asked to check how, for instance, Fig. 9 
modifies. 

3.2. Proof of Lower Bounds in Theorems 2 and 3 

Lemmas 3 and 4 provide us with a lower stochastic domination of the 
distance component d2(t) in the process r2(t) defined in Table III in terms 
of the distance component d3(t) in the simpler process r3(t) defined in (3.4) 
and (3.17) (see also Fig. 8). For M' < M define the crossing probabilities 

p2(M', M) = p2( d2(s) e (M', M) for s e (r2(M),  z2(M')) ) 

PS( M' ,  M) = p3( d3(s ) E ( M', M) for s~ (r3(M), r3(M'))) 
(3.21) 

i.e., the probability that d2(t) and d3(t) after hitting M continue to drop to 
M' without returning to M. Here p2 and p3 denote the measures on the 
trajectory space (Z'2) ~ under the kernel Q2, resp. Q3. 

L e m m a  5. For N sufficiently large and 0 < 8, < 82 < 8, in regime III 

P2(61 N, 62N) <~ P3(Sj N, 82N) (3.22) 

and in regime II 

P2(6,N'-~'-P~, 6 2 N ' - "  Pl) <~ P3(61N'-~'-P~, 62 N'-~'-Is~) (3.23) 

ProoL Immediate from Lemmas 3 and 4. II 

Counting the number of excursions of d2(t) to the left of M before 
hitting M'  < M, we have 

rZ(M') ~-R 
(3.24) 

P ( R > k ) =  [1 -p2(M' ,  M)] k (k>~ 1) 
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The following two lemmas combined with (3.3) and (3.22)-(3.24) complete 
the proof of the lower bounds in Theorems 2 and 3. 

L e m m a  6. In regime III, for any 0 < 61 < 62 < 1/3 there exists K >  0 
such that 

lim e xut-~'P3(61 N, 62N) = 0 (3.25) 

Lamina  7. In regime II, for any 0 < 6 t < 6 2 < 1  there exists K ' > 0  
such that 

lim er"ut-~"PS(flN 1 -~.-t~, 62N L -{~'-o))=0 (3.26) 
N ~ c / 2  

Proof of Lemmas 6 and 7. Return to (3.4). When c3(t) enters 1, 
d3(t) starts to decrease. The total decrease before it exits 1 is 

with 

Z I = - ( Y I +  "'" +YK) 

K, Y~, Yz .... independent 

P(Yi  = 1)= l 

P ( K > k ) = ( 1 - q l )  k (k>_.l) 

(3.27) 

(3.28) 

When cS(t) enters 2, dS(t) may move either up or down. The total decrease 
before it exits 2 is 

Z z =  YI + "'" + Yr (3.29) 

with 

K, YI, Y2 .... independent 

P ( Y ~ = - I ) =  qz , P (Y i=  + 1 ) =  q3 
q2 + q3 q2 + q3 

P ( K > k ) = ( q 2 + q s )  k (k>~l) 

(3.30) 

Consider now - Z I  + Z 2 -  2, the increase of d3(t) as c3(t) makes one cycle 
in {1, 2}. We want to think of this sum as a single step in a random jump 
process on 7/. More precisely, define 

S ( t ) = W , +  . . . + W ,  (t>~O) (3.31) 
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with 

WI, W2 .... i.i.d, with the same distribution as - Z I  + Z2 - 2 

Compute [recall q~, q2, q3 defined in (3.4) and (3.17)] 

(3.32) 

1 
E ( Z I ) = - -  

ql 

6 6 
~ - -  ~ - -  N )' 

2w 2 

5 3 Na 
2v 2 

E(Z2) 
1 q3--q2 

1 - q 2  - q 3  q 2  + q 3  

I - 2 6  1 - 26 
2(1+~)w 2(1+~)  

i f  f l > y  

if f l < y < 2 f l  

- - N  ~' if 2 y > f l > ?  

(3.33) 

= ( 1 - 2 6 ) w ~ ( 1 - 2 6 ) N  e - '  if 2y<~fl 
V 

2, ,  ,f 

In all three cases E ( W I ) = E ( - Z , + Z 2 - 2  ) is positive and large as 
N--+ oo. This means that S(t) is a random walk with positive drift. 

Next we proceed separately in the three cases: 

{i) 2 y > f l > ?  (regimelII) :  Divide 7/ into blocks of size N ~' and 
monitor S(t) on this block scale, i.e., consider ~(t)=l_S(t)/N~'J. The 
process S{t) is a random walk on 7/ with positive drift when 6 < 1/3 [by 
(3.33)] and with exponentially bounded tails [by (3.27)-(3.30)]. For S(t) 
to go from 0 to - ( a 2 - a , ) N  is the same as for g(t) to go from 0 to 
- (62 - 31 ) N '  - ~'. This has probability exp( - KN' - ~') by a standard large- 
deviation estimate, which in turn yields (3.25). 

(ii) 2y~<fl (regimelII) :  Apply the same argument. Since f l -y~>y ,  
this time the right tail of the random walk decays slower than exponential. 
However, this does not affect the estimate for the probability of S(t) to run 
left from 0 to - ( 5 , - 6 , ) N ' - " ,  and so again (3.25) holds. 

(iii) f l < y < 2 f l  (regimell):  Scale S(t)=kS(t)/Na_I. For S(t) to go 
from 0 to - ( a = - a , ) N  is the same as for S(t) to go from 0 to 
- ( 6 2 -  6 , ) N  l -  ~'. The same estimate holds as before, yielding (3.26). 
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The case not listed in (3.33) is: 

(iv) y >/2fl (regime II): See the remark below Lemma 4. The same 
argument as in (iii) is still valid after replacing - Z 1  + Z 2 - 2  in (3.32) by 
- Z I + Z 2 - ( I + Z * ) ,  because Z* has an exponential tail and EZ* is 
bounded as N ~  oo. II 

Combine (3.3) with (3.24)-(3.26) to get the lower bounds in Theorems 
2 and 3. 

4. PROOF OF UPPER B O U N D S  FOR M E A N - F I E L D  M O D E L  

4.1. Upper  Stochast ic  Dominat ion  

In Sections 4.1.1 and 4.1.2 we treat regimes 11I and 1I, respectively. We 
first consider only the leading-order column in Table II. 

4 . 1 . 1 .  R e g i m e  lU (y < l, fl>]:). PickO<6<l/2, e>Oandletr3(t) 
be the Markov process with the following kernel: 

2w 
Q3((1, d), ( l , d -  l ) ) =  1 - - -  

6 

2w 
qt := Q3(( 1, d), (2, N)) =--~ 

(4.1) 
Q3((2, N), (2, N) )=  1 - 2 ( 1  -e )v  

q, := Q3((2, N), (1, N)) = 2(1 - e)v 

Q3 zero otherwise 

This chain keeps the distance fixed at the maximal value N while in state 
2, and allows it to go down stepwise only while in state 1. The starting 
point is 

r3(0) = (2, N) (4.2) 

L e m m a  8. For N sufficiently large, as long as 

dZ(t) >16, > 6 (4.3) 
N 

P! P2 P3 
W W  'r SWlWB- ; IWVlW~ I ~VlWa+ I 

q~ 
1 I 

(2,8) 1 - 

Fig. 16 
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Pt P2 /93 
W W  I tnVlWa_ I aWlWne I tnVlWa+ 

qZ 
2 ' J 

(2,N) (1 ,N) 

Fig. 17 

w -  I 

there exists a coupling of r2(t) and r3(t) such that 

d2(t)<<,d3(t) a.s. (4.4) 

ProoL The four allowed combinations of (c 2, c 3) are 

(c2, c3)~{(WW, 1),(WW, 2),tBW/WB, 2),(BB, 2)} (4.5) 

The four corresponding diagrams are given in Figs. 16-19, with 

Pl + P2 + P3 <~ qt (4.6) 

Pl + P2 + P3 ~ < 1 --qz (4.7) 

p 4 + p s + p 6 + P T < ~  1 - q 2  (4.8) 

Pro 1> q-' (4.9) 

As before, (4.6)-(4.9) guarantee that (c 2, c 3) stays on the four combinations 
given in (4.5), and that (4.4) is satisfied. One verifies that (4.6)-(4.9) hold 
for N sufficiently large using that 3, y > 0 is the same as v, w ,~ 1. The condi- 
tion fl > 7 is not needed. II 

4.1.2. R e g i m e  II ( y < l ,  fl<7). Pick 6, e > 0 a n d l e t  r3(t) be given 
by the following kernel: 

2v 
Q3((1, d), (1, d -  1))= 1 - - -  

2v 
ql := Q3(( 1, d), (2, d +  1)) =-~- 

(4.10) 
Q3((2, d), (2, d +  1))= 1-2(1  - e ) v  

q2 :=Q3(( 2, d), (1, d +  1 ) ) = 2 ( 1 - e ) v  

Q3 zero otherwise 

P4 Ps P~ Pr P8 
B W / W B t  ~ . m a -  j ~ 1 w 8 +  ' Bs-  ~ n .  ' . ~ t -  ' ~ ' 

q2 
2 , , 

(2,N) (1,N) 
Fig. 18 
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BB I 

2 I 

Ptl  P9 
BB-  I B a §  I B W l W B -  

(2,N) 

Fig. 19 

Pl0 
I 

q2 
I I 

(1 ,N) 

The starting point is 

r 3 ( 0 )  = (2, 5N l -('~-~)) (4.11) 

L e m m a  9. For N sufficiently large, as long as 

d(t)>~6 lw  with 6 j > 5  (4.12) 
N v 

there exists a coupling of r2(t) and r3(t) such that 

d 2 ( t + l ) - d 2 ( t ) < ~ d 3 ( t + l ) - d 3 ( t )  a.s. (4.13) 

Proof. The four allowed combinations of (c 2, c 3) are the same as in 
(4.5). The diagrams are the same as in Figs. 16-19, but with (1, N), (2, N) 
replaced by (1, d +  1), (2, d +  1). The conditions (4.6)-(4.9) are implied by 
(4.12) for N sufficiently large because 0 < fl < y is the same as w ,~ v <~ 1. l 

To close this section we recall the remark made at the end of Section 3.1. 
All transitions that we have ignored by considering the leading-order column 
in Table II can now be easily incorporated. Lemmas 8 and 9 are valid with the 
perturbations included. 

4.2. Proof  of Upper  Bounds in Theorems 2 and 3 

Lemmas 8 and 9 provide us with an upper stochastic domination of 
the distance component dZ(t) in the process rZ(t) defined in Table III. 
Return to Section 3.1. Our original process r(t) had been reduced to the 
kernels Ql in (3.1) and QZ in (3.2). In going from Q1 to Q2, however, we 
ignored the time spent by the process without changing. This was com- 
patible with lower stochastic domination [see (3.3)], but it is not with 
upper stochastic domination. We proceed as follows. 
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From Table II we see that the average waiting time in the color pairs 
WW, BW/WB, and BB is 

WW: 
1 1 

zl + 2w( 1 - ,d ) ~< 2vt'-"S 

1 
BW/WB: ~<2 (4.14) 

1/2 + zl(v + w) 

1 1 
BB: <~ - -  

(1 + d ) v + w  v + w  

The largest one being bounded above by 1/w ~ N ~', let us define 

Tindependent ofrZ(t) with P(T> k) = (1 - w) k (k >~ 1) (4.15) 

Then we have 

r(M) = r l (M) ~(Tr2(M) (4.16) 

The factor T compensates for the waiting time that we ignored in going 
from Q~ to Qz. Since T =  O(N~')= o(N) as N ~  ~ ,  it cannot compete with 
the estimates for z"(M) that we shall derive below. 

R e g i m e  III ( y < l ,  f l>y) .  From Lemma8 we get 

r2(61 N) ~< r3(61 N) (4.17) 

The upper bound in Theorem 3 follows by combining (4.16)-(4.17) with 
the following estimate: 

L e m m a  10. For any 61 < 1/2 there exists K > 0  such that 

lim P3(z3(61N)<erU'-')= 1 ( 4 . 1 8 )  
N ~ o c ,  

ProoL The only way the chain in (4.1) can reach the distance 61N 
is by staying in state 1 for at least ( 1 - 6 1 ) N  steps in a row. This has 
probability 

(1 ~ ~-~/2 ,](~ -,5,),v ~ exp ( 2(1-61)5 N~-~') (4.19) 

Since z3(6mN ) is at most ( 1 - 6 , ) N  times the number of trials before this 
happens, the claim follows for K >  2 ( 1 -  61)/6. | 
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R e g i m e  II ( ) ,< l ,  f l<y) .  From L e m m a 9 w e g e t  

32(6, N l - i).- t~)) ~< 33(6, N '  - ()' - pl) (4.20) 

The upper bounds in Theorem 2(i, ii) follow by combining (4.16) and 
(4.20) with the following estimates: 

l . e mm a  11. (i) For any 6, > 1 there exists K > 0  such that 

lim P3(33(6, N '  - I~'- t~)) < KN) = 1 (4.21) 
N ~ o o  

(ii) For any 6,  < 1 there exists K' > 0 such that 

lim P3(r3(6, N ' -  I~-~)) < e Kw'-~) = 1 
N ~ z o  

(4.22) 

Proof. The argument is similar to that in Section 3.2. When C3(/) 
enters 1, d3(t) starts to decrease. The total decrease while in 1 is Z, given 
by (3.27)-(3.28) with q, defined in (4.10). When C3(/) enters 2, d3(t) starts 
to increase. The total increase while in 2 is Z2 given by (3.29)-(3.30) with 
qz+q3 replaced by 1 - q 2  defined in (4.10). We have 

1 6 6 
E(Z~) = N t~ 

q, 2v 2 

1 1 1 
E(Z2 ) = "~ N p 

qz 2 ( 1 - e ) v  2 ( 1 - e )  

(4.23) 

The total increase of d3(t) as c3(t) makes one cycle in {1,2} equals 
- Z ,  + Z 2 - 2 ,  while the total cycle time equals Z,  + Zz +2.  

Let 

S( t )= �89 + w ,  + ... + W, (t >~O) (4.24) 

with 

W,, W2 .... i.i.d, with the same distribution as - Z j  + Z_, - 2 (4.25) 

The random walk S(t) is the distance d3(t) observed at the completion 
times of a cycle. The starting point d3(0)= �89 corresponds to d(0) ' 
( N ~  ~ )  in the original model (see below (1.13)). From (4.23) we see 
that E(W,) is large, negative when 6 > 1 / ( 1 - e )  and large, positive when 
6 <  1 / (1 -e ) .  We now prove parts (i) and (ii) of Lemma 11: 

(i) Pick 6 >  1 / ( l - e ) .  Then E ( W , ) ~  - - t i N  tJ for some c, >0.  Hence 
S(t) = IS(t)/NtJ_] is a random walk with negative drift and with exponen- 
tially bounded tails. For S(t) to go from �89 to 6 , N ' - ~ , - t ~  is the same as 
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for S(t) to go from �89 ~ -~ to 61N I - L  This takes ,~(t) a number of steps 
that is of order N ~-~. Because E(Z~+Zz+2)<<,c2N # for some c2>0,  
which bounds the mean time involved with a single step of S(t), the claim 
follows by picking 1 < 6 < 6~ and e sufficiently small. 

(ii) Pick 6 < 6 1 < I < 6 2 < 1 / ( 1 - e ) .  Then E ( W , ) ~ c ~ N  # for some 
c~ >0.  Each excursion of d3(t) to the right of 62N ~ - ~ ' - ~  takes a time of 
order N, by (4 .21) jus t  proved. For S(t) to go from 6,_N ~-~'-#1 to 
6~N ~-~ '~1  is the same as for ,~(t) to go from 6,.N ~-~' to 6 , N ~ - L  This 
takes S(t) a number of steps that is of order exp(KN~-~'), because now ,~(t) 
has a positive drift. Because E(Z~ + Z ,  + 2)~< c,_N ~ is a polynomial factor, 
the claim follows. I 

5. R A N D O M  M E D I U M  

In this section we have to face the problem of showing that the process 
(r(t)),~o defined by (2.3) and evolving according to (2.4) is well approx- 
imated by the mean-field version evolving according to (2.13), in such a way 
that we can carry over the estimates of Sections 3 and 4. The main idea is 
that, as the dimension N of the configuration space -Y tends to infinity, the 
random medium H tends to be almost uniform, i.e., for most a, ~ ~ Z' the 
numbers of neighboring color pairs defined in (2.2) are very close to their 
average values given in (2.12). To make this idea precise involves some 
large-deviation estimates for H, which are given in Section 5.1. These have to 
be quite sharp, because to prove Theorems 4 and 5 we need to follow the 
distance process (d(x(t))),>~o over a stretched-exponential length of time. In 
Section 5.2 we prove a key lemma showing that the coupled dynamics sees 
an almost uniform medium over a stretched-exponential length of time. In 
Section 5.3 we use this lemma to prove Theorems 4 and 5. 

5.1. Sta t ic  Large-Dev ia t ion  Est imate for  H 

Recall the notation introduced in Sections 1.1-1.2 and 2.1-2.2. 

Lemma 12. Fix 0 < 6 < 1 / 2  and x ~ X  z such that 6N<<.d(x)<<. 
(1 - 6) N. For every ~ > 0 there exists K~ = K, (6, e) > 0 such that 

P(I Vk(x, c) - F.Vk(x, c)[ ~< eN ~ -7, for k -- 1, 2 and c = WW, BW, WB) 

>/1 - e  -K'N'-~' (5.1) 

Proof. Consider k =  1 and fix c. By the Markov inequality 

P(  Vl (x, c) > g 'v ,  (x, c) + ~N ' - ~') 

~< inf e xp{ -2 [EV~ (x ,  c)+eN~-~']} E(exp[2V~(x, c)])  (5.2) 
2 > 0  



618 Frigessi and den Hollander 

By the independence of colors 

L'(exp[ ). Vl(x, c)] ) = [ 1 -- p(c) + p(c) ea] al''l (5.3) 

For 0 < 2 ~< 20 sufficiently small 

1 - p + p e :  <~ e p :  + p~ ~ - p)  : : /2  (p~  [0, 1])  (5.4) 

By substituting RVt(x, c)=d(x)p(c) and using the restriction d(x)>~bN 
we get 

P( Vl(x, c) > EVl(x, c) + eN l -r) 

~< inf exp{-) .eUt-; '+�89 (5.5) 
2~<2 0 

Note that 

p ( c ) [ 1 - p ( c ) ] ~ 2 N  - r  if c = W W  

N - :  if c =  BW, WB (5.6) 

Pick 2=4~ /6  in (5.5) to arrive at the upper bound e x p ( - K N  ~-~') with 
K = 4~'-/6. This proves the upper large-deviation estimate for e small enough 
such that 4e/6 ~< )-o, and hence for all e > 0. The same proof  works for k = 2 
and relies on N-d(x)>~6N. 

The lower large-deviation estimate is obtained similarly after replacing 
2 by - 2 .  Inequality (5.1) summarizes 12 large deviations, namely for 
k = 1, 2 and c = WW, BW, WB in both directions. II 

Remark. Lemma 12 makes no statement about  c=BB. In fact, since 
p(BB)..-N 2r, the estimate for this color pair has the weaker exponent 
N t-2,:. However, we shall not need this case. 

5.2. Dynamic  Large-Devia t ion  Est imate for  x(t) 

For ~ > 0 define the set 

At = {x ~ S~: I Vk(X, C) -- EVk(x, c)l ~< eN l - *' for k = 1, 2 

and c = WW, BW, WB} (5.7) 

L e m m a 1 2  shows that P(xCA~)<~exp(-KiN I-~') for any x ~ s  "2 with 
6N<~d(x)<~(l-6)N and for some Kt >0 .  Our  key lemma below shows 
that on a stretched-exponential time scale x(t) does not get out of A~ before 
d(t)=d(x(t)) hits either f N  or (1 - 6 ) N .  
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Lemma 13. For every ~>0 and 0 < ~ <  1/2 there exists K2= 
K2(6, ~) > 0 such that 

lira P(x( t ) (~A~forsome t<<.e KzN~-; ^ ~(6N) ^ z((1 - 6 ) N ) ) = 0  (5.8) 
N ~ o c  

Fix ~, 6. The proof  consists of several steps. Proof. 

1. Let 

For  any n we have 

E l = {r(6N) ̂  ~((I - 6 )N)>  t} (5.9) 

. 

P( [ E ~ ]  c) <~ e -c~-N' -~' for t <~ e c3N' -~ 

The proof  will be given below. 

4. Write 

P(E '" 2. , , E , , x ( t ) $ A ~ )  

= T ,  
{x: 6 N <  d(x) < (I - 6 ) N }  

We estimate the second factor. 

5. Given E~ and x ( t ) = x = ( e ,  ~) we have 

# {1 <<.i~N: a ( s ) # a  i, ~(s )# - r  0 ~ < s <  t} > ~ N - 2 C t N  l-~' 

P ( E ~ ; E ~ ; x ( t ) = x ) P ( x r  (5.15) 

k e m r n a  14, For  every C, > 0 there exist C2, C3 > 0 such that  

(5.14) 

(5.16) 

�9 " ~ P ( E l ; x ( t )  A~) 10) P(30 <~ t <~ n. E , , x ( t ) r  A~) <~ r (5. 
t ~ O  

2. Define 

l~ = # { 1 ~< i ~< N: a(s)  = at(t) for some 0 ~< s < t } 
(5.11) 

r  # { 1  i<~N: l , -  <~ ~(s )=~i ( t ) fo r someO<~s<t}  

i.e,, the number  of neighbors of ~(t), resp. ~(t), visited prior to time t. Pick 
C t > 0 and let 

2 E,  = {;~' v ;~,~C,N'-,'} (5.12} 

For  any t we have 

P ( E I ; x ( t ) r  ) (5.13) 
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i.e., there are at least N - 2 C I  NI-'~ directions i in which the neighbors of 
a and r have not yet been visited. By the independence of colors each such 
direction has an independent probability of contributing to the set Vk(X, C) 
[recall (2.2)]. It therefore follows that when we pick 2C1 < �89 [recall (5.7)] 

P(x E A, I EI; E~; x(t) = x) >1 e ( x  ~ A~I2) (5.17) 

6. By combining (5.15) with (5.17) we get 

P(E~; E~, x(t) r A~) 

<<. ~" PfE~;E~;x f t )=x)P(xq~A, /2)  (5.18) 
{x:bN<d(x)<(l --~)N} 

According to Lemma 12, P(x(EA:.)<<.exp(-K~N I-~') for all x such that 
fiN < d(x) < (1 - 6 ) N .  Hence 

P(EI; E~; x(t) r A~) ~< e-K' N~-~' (5.19) 

7. By combining (5.13), (5.14), and (5.19) we get 

P(E~;x(t)~A~)<~e-C2N'-'+e-K'N'-; ' fort<~eC3N'-'  (5.20) 

Substitute (5.20) into (5.10) and pick n =exp(K2N 1-1,) with K2 < C2 A K~ 
to arrive at 

lim P(30 <~ t <<. eX2N~-~': El; x(t) r A~) = 0 (5.21) 
N ~ o o  

This is (5.8) in Lemma 13. | 

Proof of Lemrna 14. The proof consists of several steps. 

1. Since the two components have the same initial distribution nH 
[see (1.3) and Section 1.3], we have 

P([E~]") <~ 2P(l~ > C, N'-1.)  (5.22) 

Since n n is reversible under the dynamics (see Section 1.2), we have 

P(17 > Cl N I - ;') = P(m'[ > Cl N l - ~') (5.23) 

where we define 

m~= #{1 <<.i<<.N:a(s)=ai(O)forsomeO<s<<.t} (5.24) 

i.e., the number of neighbors of a(0) visited up to time t. 
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2. Denote the number of black neighbors of tr by 

B ( t r ) = # { l < ~ i < ~ N : H ( a ' ) = B }  (ae .U)  

Let 

621 

(5.25) 

3 m  E ,  - { IB(tr(s)) - N ~ -~1 <~ ~N'  - r  for 0 ~< s ~< t} (5.26) 

By the stationarity of the color environment as seen relative to a(t)  (which 
is a consequence of the s'tationarity of ntr under the dynamics) we have 

P( [E~]  c) ~< ~ P ( l B ( c r ( s ) ) -  N 1 -~'1 > ~N ~ -~) 
s = O  

= (t + 1) P(IB(tr(O)) - N t  -"1 > eN'  -~) 

~< (t + 1) e - c ' u ' - '  (5.27) 

where the last inequality follows from Lemma 12 [note that (r(0) is inde- 
pendent of B(tr(0))]. Pick t = e c3N'-;" with C3 < �89 to get 

P( [E3]  c) ~< e-c,N,-','/z for t <~ e c~N'-~' (5.28) 

3. By combining (5.22), (5.23), and (5.28) we see that to get 
Lemma 14 it now suffices to prove that 

3 ~ e-CsNt-;" eC3N ~-r P ( m ,  > Ci N ~ - r ;  E,  ) ..~ for t ~< (5.29) 

1 since this implies (5.14) with Cz < ~C4 A C5. 

4. To prove (5.29) we proceed as follows. Let 6(t) denote the 
Glauber dynamics observed at the jump times, i.e., 

6 ( u ) = a ( z , )  (u=0 ,  1,2,..) 

3o = 0 (5.30) 

3,+ 1 = inf{t > ~,: a(t) g: a(r,,) } 

We have obviously 

P ( m ~ > C , N ' - ~ ' ; E ~ ) < < . P ( r h ~ > C ~ N ' - ~ ' ; E ~ )  (5.31) 

where rh, and ff~ are the same as in (5.24), resp. (5.26), but with a(t)  
replaced by 6(t). We estimate the r.h.s, of (5.31). 

5. Each site q at distance k from 6(0) has exactly k neighbors 
qt ..... r/k that are at distance k - 1  from 6(0) ( k < N / 2 ) .  Since E~ implies 
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that 6(s) has at least ( 1 - ~ )  N ~-~' black neighbors for all 0~<s~< t, we can 
estimate 

e(6Is + 1 ) ~ {,t, ..... ,r, }16(s )  = ,1; P~) 

k 
~< fork~< (1 - e )  N '-~ '  (5.32) 

(1 - e ) N I - ; ' - k  

Indeed, the transition probabil i ty from q to {q~ ..... qk} is maximal  when r/ 
is white and qt ..... q~ are all black (see Section 1.2). In that  case at least 
(1 - e )  N j - ; ' - k  neighbors of q at distance k +  1 from 6(0) are also black, 
which gives the upper  bound in (5.32). 

6. F rom (5.32) we see that the distance process a(t)=d(6(t) ,  6(0)) 
given L'~ decreases more  slowly than the b i r th-death  chain do(t) on the set 
{0, 1 ..... �89 - e ) N  I-~'} defined by 

P(do(t + 1 ) = k -  l ldo( t )=k)= 
2k 

( 1 - - e ) N l - ;  ' 

2k 
P(do(t+ 1 ) = k +  l ldo( t )=k)= 1 

( l _ e ) N l - ~  ' 

(5.33) 

Since obviously [recall (5.24)] 

,~7 ~ # {0 < s ~< t: , ;(s)  = 1 } (5.34) 

it follows that 

P ( , h ~ > C , N ' - ; ' I E ~ ) < ~ P ( # { O < s < ~ t : d o ( s ) = I } > C , N ' - ; ' )  (5.35) 

[Note  that both ct(t) and do(t) must return to 1 after hitting 0.] Finally we 
estimate the r.h.s, of (5.35). 

7. Let Pl,  P2 .... denote the successive return times of do(t) to 1. We 
have 

\[CI NI - I ) 
P ( # { O < s < ~ t : d o ( s ) = l } > C , N ' - ; ' ) ~ e {  Y" pj<~t 

<~ P(pj<~ t for 1 ~<j~< C, N j -~)  

= [P(p, <. t)]  c 'u ' -~  (5.36) 
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where the last equality uses that the pj are i.i.d. Now, it is a standard 
property that as N ~ ov 

p JE(p i ) ~ exp( 1 ) 
1 (5.37) 

Nl_ ; . log  E ( p j ) ~  C 6 > 0  

[exp(1) denotes the exponential distribution with mean 1]. Hence 

P(pt<~eC3N'-~)<~ for C3 sufficiently small. (5.38) 

8. Combine (5.31), (5.35), (5.36), and (5.38) to get (5.29) with C5< 
Cj log 2. I 

5.3. Smal l  Pe r tu rba t ion  of M e a n  Field 

Proof of  Theorem 5. The point of Lemma 13 is that ( l /N) Vk(x, c) 
is very close to ( l /N)EV~(x,  c) along the trajectory of x(t) for a very long 
time. Indeed, as long as x(t)~ A, we have 

1 _  c) Vk(x(t), c ) - -~EVk(x ( t ) ,  <~N-; '  if c =  WW, BW, WB 

~< 3eN-i '  if c = BB (5.39) 

The bound for c = BB follows because the fluctuations add up to zero. 
Now return to (2.10), The transition probabilities of r(t) defined in 

(2.3) deviate from their mean-field value Q(r, r') in (2.13) by not more than 

P,(r, r') + 3P, (r, r ')  
k = l , 2  ?=WI 'V .  BH".I4:B 

Hence the random medium transition kernel in (2.10) equals 

Q(r, r') + 12~N-;'z,(r, r') (5.40) 

where (z,),~>o is some random process on C2•  D with the property 

~ z,(r, r ') = 0, Iz,(r,r')[<~l (5.41) 
r '  

The point is to think of the last term in (5.40) as a random perturbation of 
the mean-field model. We have little information about z,. It is some func- 
tional of x(t) and H, which we have chosen to ignore by contracting to 

822/75/3..4-18 
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r(t). However, since e may be picked arbitrarily small, the random pertur- 
bation is of order ev (e ,~ 1 ), where v = N- ; '  is the parameter in Tables I - I I I .  
Thus, by Lemma 13, the leading-order column in Table lI essentially 
describes the perturbed process up to a time o f  order exp(K2 N 1 - ;.), as long 
as it does not hit distance f N  or ( 1 - f ) N .  Since all stochastic domination 
esthnates in Sections 3 and 4 are flexible under small perturbations (i.e., v by 
ev and w by ew, with e ~ 1 ), it immediately follows that Theorem 3 carries 
over to Theorem 5 for  the random medium. Recall here the remarks made 
at the end of Sections 3.1 and 4.1. II 

Proof  o f  Theorem 4. The statements in Lemmas 12 and 13 require 
that the distance lies in the interval [ fN ,  (1 - f ) N ]  for some 0 < f < 1/2. 
Therefore the results of Theorem 2 cannot  be immediately carried over 
because they involve distances of order" N ~ - ~ ' - P ~ = o ( N ) .  However, the 
weaker estimates of Theorem 4 can be obtained as follows. 

Pick ct such that 7 < ct < 1. It is easily checked that Lemma 12 holds 
for any x e X  2 such that N ' < ~ d ( x ) < ~ N - N  ~ when in (5.1) we replace 
e x p ( - K ~ N  t-~') by e xp ( -K i N=-~ ' ) .  Similarly, Lemma 13 holds when in 
(5.8) we replace exp(KzN ~ -1.) by exp(K.,N =-~') and fiN by NL Therefore 
we know that the mean-field approximation works up to a time of order 
exp(K2N'-~') .  Now, if 2 7 - f l <  1, then we can pick c~= 1 - ( 7 - f l )  [which 
is compatible with 7 <ct < 1]. It follows that Theorem 2(i) immediately 
carries over to Theorem4( i ) (a )  because (1 .14) involves  a time scale of 
order N = o ( e x p [ K z N  ~ - cz~,- p~] ). The mean-field approximation works up 
to a time of order exp[K2N ~- iz~.-1J I], which explains Theorem 4(ii). If, on 
the other hand, 2 7 - / 3  >/1, then no ct satisfying ct ~< 1 - ( 7 - / 3 )  [and  com- 
patible with 7 < ct < 1] exists. All we can say is that, since the mean-field 
model drops below N ~ -t~.-al in a time of order N, we must have r (N ") < 
K2N for all ct >7...> 1 - ( 7 - f l ) .  This explains Theorem 4(i)(b). II 
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